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ABSTRACT: A robust route to 2,4-disubstituted pyrrole
heterocycles relying upon a cascade reaction is reported.
The reaction benefits from operational simplicity: it is air
and moisture tolerant and is performed at ambient tem-
perature. Control over the reaction conditions provides
ready access to isopyrroles, 2,3,4-trisubstituted pyrroles,
and 3-substituted pyrollidin-2-ones.

he finite nature of chemical feedstocks coupled with the

negative impacts of manufacturing waste streams necessi-
tates the continued development of increasingly efficient pro-
cesses for the preparation of valuable synthetic building blocks."
In this regard, our group has demonstrated that simple addition
reactions between differentially substituted alkynes can be inter-
faced with subsequent isomerizations to generate functional
molecules while upholding high levels of atom-economy.” These
one-pot reactions benefit from the ability to conduct multiple
chemical transformations in a single reaction vessel, providing
their intended target while minimizing waste associated with
traditional isolation and purification protocols.®

We envisioned that such a strategy could be applied to the
efficient production of valuable pyrrole heterocycles from alkyne
starting materials (Scheme 1).* The addition of terminal alkyne 2
to suitably activated propargyl amine 1 under alkyne cross-
coupling conditions® would result in ynenoate 3, whose isomer-
ization via a S-endo-dig cyclization and tautomerization would
then provide pyrrole $ (Scheme 1).°

While this sequence represents an efficient, isohypsic” entry
into 2,4-disubstituted pyrroles,® we anticipated that intermediates
3 and 4 could serve as strategic points of product diversification if
suitable conditions could be found for their selective preparation.’
In this regard, we viewed the design of a flexible route to topo-
logically varied five-membered nitrogen heterocycles as an intri-
guing challenge for atom-economic reaction design.'’

We anticipated that electron-deficient propargyl amine 1
would serve as a suitable acceptor in an alkyne cross-coupling
reaction. It should be noted that propargyl amides similar to 1 are
prone to S-endo-dig cyclization, affording the corresponding
oxazole heterocycle.'” In this regard, the current method pro-
vides a novel avenue of reactivity for these versatile building
blocks, while avoiding such an isomerization process.

Initial investigations employing phenyl acetylene (2a) as the
donor alkyne with toluene as the solvent'* revealed that product
distributions depend on the ratio of Pd(OAc), to the tris-(2,6-
dimethoxyphenyl)phosphine (TDMPP) ligand (Table 1)." Ac-
cordingly, an equimolar amount of ligand and metal cleanly
afforded ynenoate 3a as a single geometrical isomer (entry 1),
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Scheme 1. Pyrroles from Alkynes
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whereas decreasing the amount of TDMPP resulted in competi-
tive formation of isopyrrole 4a (entries 2 and 3). Importantly,
pyrrole formation was not observed under the reaction conditions,
and increasing either the reaction time or temperature resulted in
complex mixtures and poor mass recovery.

While both free and phosphine-ligated Pd(OAc), were ineffec-
tive at promoting isomerization to the pyrrole product, we quickly
found that PA(OTFA), resulted in clean formation of pyrrole Sk
from ynenoate 3k (Table 2).2® In this case, both acetonitrile and
benzonitrile complexes of PACl, (entries 4 and S) were not as
effective as PA(OTFA),, which promoted the desired cyclization
and tautomerization in near quantitative yield. Once again,
TDMPP was found to inhibit both of these transformations
(compare entries 1 and 3), suggesting that a nonphosphine-ligated
Pd species is responsible for catalysis.

The results presented in Tables 1 and 2 led us to adopt a set of
optimized conditions for the one-pot synthesis of either pyrrole
or enyne products (Table 3). Thus, treatment of 1 with a variety
of aromatic alkynes in the presence of Pd(OAc), (0.75 mol %)
and TDMPP (0.75 mol %) in PhMe at room temperature
afforded the corresponding ynenoate 3 in 77—97% isolated
yields after 6 h. Nonaromatic donor alkynes generally required
slightly longer reaction times (12—24 h), and provided yneno-
ates 3 in 64—97% isolated yield.

Alternatively, pyrroles can be obtained in yields ranging from
60 to 99% in a two-stage, one-pot process. For aromatic donors,
addition of Pd(OTFA), (1.5 mol %) following complete conversion
to the ynenoate resulted in the cyclized/isomerized product after
only 6 h. Once again, nonaromatic donors require slightly longer
reaction times and higher catalyst loadings (5.0 mol % Pd(OTFA),)
but nevertheless returned good to excellent yields of the desired

Received:  November 10, 2010
Published: December 22,2010

dx.doi.org/10.1021/ja110117g | J. Am. Chem. Soc. 2011, 133, 740-743



Journal of the American Chemical Society

COMMUNICATION

Table 1. Optimization of Selective Ynenoate Formation®

CO,Me Pd(OAc)/  MeO,C Me0,C A
H TDMPP I
| s \
Ph PhMe (0.5 M) " n”Ph
BocHN rt, 18 h NHBoc Ph Boc
2a 3a 4a
Pd(OAc), TDMPP ratio conversion”
entry (mol %) (mol %) (3a/4a)" (%)
1 3.0 3.0 20/1 100
2 3.0 1.5 3/2 100
3 3.0 0.8 1/5 100

“ All reactions were performed using 0.1 mmol of 1 and 2a. ® Determined
by 'H NMR.

Table 2. Optimization of Pyrrole Formation®

MeO,C Pd(ll}  Me0O,C
2 ] ©75mol %) - ’h Mechh
—_— \ I\
AN PhMe (1.0 M) N7 nBu N7 nBu
NHBoc ~“nBu 1, 3h Boc Boc
3k 4K 5k

entry Pd(Il)source TDMPP (mol %) ratio (4k/Sk)” conversion” (%)

1 Pd(OTFA), - 1/20 100
2 Pd(OTFA), 04 1/20 95
3 Pd(OTFA), 08 1/2 72
4 PdCL(CH;CN), - 1/1 47
5 PdCL(PhCN), - 1/20 52

“ All reactions performed with 0.1 mmol of 3k. ” Determined by 'H
NMR.

products after 24 h. Importantly, these reactions are performed in
screw-cap vials under an ambient atmosphere, with commercial
grade alkynes and benchtop solvents. Furthermore, yields remain
consistent upon scale-up, as both entries 1 and 11 have been per-
formed on half-gram and gram scales, respectively.

As evidenced by the breadth of substrates in Table 3, this
method tolerates a wide range of substituted donor alkynes.
Ortho-, meta-, and para-substituted aromatic alkynes with
both electron-donating and -withdrawing groups participate
effectively (entries 7—9 and entries 3 and 6, respectively).
Given the involvement of Pd(II) species throughout both the
coupling and the isomerization steps, aryl bromides do not
interfere with the reaction (entries 4 and S5). The basic
nitrogen of an unprotected aniline is also tolerated in the
coupling portion of the cascade (entry 9); however, cycliza-
tion to the pyrrole requires more rigorous conditions, starting
from ynenoate 3i.

In addition to aromatic donors, aliphatic alkynes undergo
efficient coupling and isomerization. Importantly, both free and
acetylated propargyl alcohols react smoothly under the standard
conditions (entries 13—15). We note the use of a 1,3-enyne as a
donor (entry 10) which provides an efficient synthesis of desirable
C-vinyl pyrroles.'®

Having established a robust set of conditions for the formation
of 2,4-disubstituted pyrroles, we turned our attention to the
synthesis of additional derivatives by exploiting the reactivity of
intermediates 3 and 4. We were particularly intrigued by the
utility of isopyrroles, which we identified as suitable donors
for ene-type addition reactions (Scheme 2)."7 To this end,

Table 3. One-Pot Synthesis of Ynenoates or Pyrroles

Me0,C

NHBoc R
3

Ynene (Yield)®

CO,Me

| Conditions A? ” H\ Conditions B® h
A R N’ R

BocHN™ 4

2

CO,Me

Boc
5

Ynene (Yield)®

Enty R= Pyrrole (Yield)® Enty R= Pyrrole (Yield)®
NH
1 A 3a (30%) a # 2 31 (77%) (12 h)
5a (80%) 5i (82%)¢
) # 3b (83%) 10;” 3j (97%)
5b (97%) 5] (96%)
nBu
s £ F acieew) 1 By 3k (83%) (18 h)
5¢ (89%) 5Kk (97%)
4 & BT 3d(e5%) 12 & 31 (74%) (24 h)
5d (75%) \K 51 (60%)
s £ 3e (74%) 1 # 3m (95%) (24 h)
5 Se(E%) \Kou 5m (70%)
.
s
3f (78%) £ _OAc 3n (74%)
6 \©\ 5f (90%) 14 I~ 5n (74%)
cHO
&
39 (84%) S _OH 30 (64%)
7 \©\ 5g (81%) 157 50 (70%)
ome Ph
£ 3h (78%) (12 h) EY 3p (86%) (24 h)
8 5h (99% 16 “VBomse P
MeO (99%) P (68%)

*Conditions A: 1 (0.1 mmol, 1 equiv), Donor Alkyne 2 (0.1 mmol,
1 equiv), PhMe (1.0 M), Pd(OAc), (0.7S mol %), TDMPP (0.75 mol
%), 6 h, rt. Reaction times other than 6 h are included in parentheses.
Y Conditions B: 1 (0.23 mmol, 1 equiv), Donor Alkyne 2 (0.23 mmol,
1 equiv), PhMe (1.0 M), (Entries 1—8, 10): Pd(OAc), (0.75 mol %),
TDMPP (0.75 mol %), 6 h, rt; then PA(OTFA), (2.0 mol %), 6 h, rt.
(Entries 11—16): Pd(OAc), (1.5 mol %), TDMPP (1.5 mol %), 24 h, rt;
then Pd(OTFA), (5.0 mol %), 24 h, rt. “Isolated yields. “From 3i
(0.1 mmol, 1 equiv), Pd(OAc), (5.0 mol %), THF (0.25 M), 60 °C, 14 h.
“BDMS = Benzyldimethylsilane.

ynenoate 3k was cyclized to isopyrrole 4k in the presence
of Pd(OAc), (3 mol %) in THF in quantitative yield.'®
Gratifyingly, 4k underwent addition to both Echenmoser's
salt (7) and diazene 8, affording products of C—C and C—N
bond formation respectively. In addition, oxygenation adja-
cent to the methyl ester could be effected by simply stirring 4k
overnight open to the atmosphere in the presence of SiO,."
The ability to intercept isopyrrole 4k provides an attractive,
atom-economical avenue for direct derivatization of the pyrrole side
chain.*

The use of Pd catalysis to effect the cyclization of 3k offers
additional avenues for substitution of the pyrrole nucleus. For
example, we reasoned that 2,3,4-trisubstituted heterocycles 9 could
be accessed by trapping vinyl-palladium intermediate 4', which is
generated during the S-endo-dig cyclization (Scheme 3).2' Thus,
exposure of ynenoate 3k to Pd(OAc), in the presence of acrolein
and LiBr afforded 9a via a reductive Heck-type addition reaction.”
Alternatively, allylation in the 3-position could be effected with allyl
chloride in the presence of PACL,(CH;CN), and propylene oxide as
a suitable acid scavenger.*® This method complements current
strategies for the functionalization of 2,4-disubstitued pyrroles,
which remains a challenging transformation.*
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Scheme 2. Reactivity of Isopyrrole Intermediates
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Scheme 3. Synthesis of 2,3,4-Trisubstituted Pyrroles
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In addition to pyrrole heterocycles, 3-substituted pyrollidin-2-
ones are available via a one-pot deprotection, cyclization sequence
(eq 1). Thus, exposure of ynenoate 3a to TMS-OTf in CH,Cl,
afforded 10 in 72% isolated yield, demonstrating an alternative,
chemoselective cyclization that highlights the versatility of our
overall strategy in accessing structurally distinct five-membered
nitrogen heterocycles.

o
3a M» HN | (1)
CH,Cl,
30°C -, 6 h © A
(72% yield)

In summary, we have developed an atom-economic synthe-
sis of 2,4-disubstituted pyrroles. The method utilizes readily
available alkynes and employs a Pd(II)-mediated cascade
reaction. By exerting control over the conditions, we have
also shown that several intermediates along the pathway
can be intercepted for further functionalization. These include
an ene addition reaction with an isopyrrole, as well as access to
2,3,4-trisubstituted pyrroles and 3-substituted pyrollidin-2-ones.
This method benefits from operational simplicity as all reactions

were performed using benchtop solvents under an ambient atmo-
sphere at room temperature. Current efforts are directed toward the
further functionalization of these intermediates, and results will be

presented in due course.
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